

Introduction to WS700

Spot/Seam control, monitor and machine sequencer for 50/60Hz resistance welding.

For s/w version 1.45

Document revision 0

Manufacturers of advanced welding controls

BF Entron Ltd. Castle Mill Works, Birmingham new road, Dudley, West Midlands, DY1 4DA England.

Tel: +44 (0)1384 455401 Fax: +44 (0)1384 455551 Email: <u>sales@bfentron.co.uk</u>

Web site: www.bfentron.co.uk

•Welding controls.

- Thyristors and power supplies
- •Power Inverters.
- •Meters and Monitors.
- •Training and Support.
- •Consultancy.

Table of contents

- 4. Functions
- 5. ... functions
- 6. Users connections
- 7. Dimensions
- 8. Mounting
- **Global** parameters 9.
- Program parameters (x64) 10.
- Keypad and indicators 11.
- 12. Menus
- 13. ..menus
- Diagnostic screen 14.
- Status messages 15.
- 16. Main menu
- Configuration menu 17.
- Edit configuration 18.
- ...edit configuration 19.
-edit configuration 20.
- Edit calibration 21.
- 22.calibration
- 23.calibration
- 24. Edit Output Map
- Edit Input Map 25.

- Edit printer setup 26.
- ..print format:table 27.
- ..print format:ASCII-HEX 28.
- ...print format:ASCII-DEC 29.
- 30. ...printer connections
- 31. Initialise all data
- 32. Edit program
- 33. ...edit program
- 34.edit program(seam)
- 35.edit program(1/2 cycle)
- 36. Edit limits
- 37. Edit Events
- 38. Electrode menu
- 39. Stepper status
- 40. Edit Stepper
- Stepper presets 41.
- Edit counter 42.
- 43. Weld log
- 44. View log
- 45. Sequencer
- Sequencer Menu 46.
- ...edit sequence 47.
- Sequencer statements 48.
- 49. Example sequence

- Copy Program 50.
- 51. I/O status
- 52. Analog status
- 53. **Disabling edits**
- 54. Pop-up current meter
- Operation: basic spot weld no weld faults 55.
- Operation: basic spot weld weld fault 56.
- Operation: repeat spot weld 57.
- 58. Operation: pulsation spot weld
- 59. Operation: upslope and downslope
- Operation: upslope and downslope 60.
- Operation: roll-spot welding 61.
- Operation: seam welding (dual heat) 62.
- Operation: seam welding (pre-heat) 63.
- 64. Operation: Retract/Hi-lift
- WS98-700 PC software 65.

Functions

- Spot / Repeat / Roll-spot / Seam(dual heat)/Seam(pre-heat)/ half-cycle welding.
- Dual weld intervals plus pulsation, upslope and downslope.
- Constant current regulation.
- 64 programmes (internal or external selection).
- Current monitoring (high/low/pre limits), programmable blocking.
- Proportional valve controller (0..10V). Selectable units (kN/lbf)
- Pressure monitoring (high/low limits).
- Programmable outputs (events).
- Machine sequencer logic.
- Programmes may be linked together for multiple spot sequences.
- Contactor timer.
- Retract/high-lift control.

...functions

- Head-lock function.
- Weld counter (programmable blocking).
- Heat stepper (programmable blocking).
- Pop-up current meter.
- Weld history log.
- Support for G.E. Schmidt NVS nut-welding system.
- Primary or Secondary feedback via Toroid or CT.
- Toroid, CT and PV calibration functions.
- Toroid test function.
- Disable edit function.
- Large backlit 4x20 lcd display.
- RS232 port, for PC communications and print out of weld data.

Users connections

WS700 V1.45

Dimensions

Mounting

To mount a WS700 timer into a panel, you will need to cut an aperture and drill holes as shown here:

Global parameters

Configuration

• Sequence

Spot / Roll-spot / Seam(2-heat/pre-heat) / 1/2-cycle(alt/+/-)

• Retract:

(Simple / Hi-lift+ / Hi-lift-)

- Frequency (50/60 Hz)
- Contactor time (0..200 s)
- Blanking (On/Off)
- Await Pressure (On/Off)
- Toroid test (On/Off)
- Sensor (Toroid/CT)
- Heat range(Wide/High/Low)
- Head-lock/Stop/Continue on fault
- Sequencer (On/Off)
- Test inputs (Off/Air&Water/Air&Water-latched/Stop&thermal)
- NVS System (On/Off)
- Language (UK/US)

Stepper

- Stepper on/off.
- Stop /continue at end
- Curve(10 point, interpolated)

Calibration

- Toroid sensitivity(100..2000 mV/kA)
- Toroid attenuation factor (1..4)
- CT S/P ratio (1:1..199:1)
- CT S/P offset (-1kA..+1kA)
- Seam CCR gain
- Pressure (2 points, kN/V or lbf/V)
- Analog input gain (0.9..2.5)
- Analog input offset(-9.99..+9.99 V)

Counter

- Actual count (0..9999).
- Terminal count(0..9999).
- Stop at end/continue at end.
- Synchronise with log (Yes/No)

Output Map

• Normal/Event/Sequencer (x8)

Input Map

• Normal/Sequencer (x16)

<u>Sequencer</u>

• Up to 250 statements

Program parameters (x64)

Weld program

- Pre-squeeze (0..99 cycles)
- Squeeze (0..99 cycles)
- Weld1 (0..99 cycles)
- Cool1(0..99 cycles)
- Weld2(0..99 cycles)
- Cool2(0..99 cycles)
- Pulses(0..9)
- Upslope(0..99 cycles)
- Downslope (0..99 cycles)
- Hold(0..99 cycles)
- Off(0..99 cycles)
- Pressure (0..10V)
- Heat 1(0..99.9%)
- Heat 2(0..99.9%)
- Current 1 (0..60kA)
- Current 2 (0..60kA)
- Balance (seam only)
- Normal/Link program

Monitor limits

- Current monitor On/Off
- Current low limit, weld1 (0..99%)
- Current high limit, weld1 (0..99%)
- Current pre-limit, weld1 (0..99%)
- Current low limit, weld2 (0..99%)
- Current high limit, weld2 (0..99%)
- Current pre-limit, weld2 (0..99%)
- Pre-limit count (0..99)
- Pressure monitor On/Off
- Pressure low limit (0..99%)
- Pressure high limit (0..99%)

Events

• 4 x 4 trigger points

Keypad and indicators

Using the keypad

•Press the **F** (function) key to return to the previous screen, or to move between menu screens (see menus).

The selected function or parameter will flash.
Use the (1) + keys to select a different

function or parameter. The visible window will scroll when required.

Press the ≥ key to access the selected function.
Press the + or - keys to alter the selected parameter. Press + and - together to set a parameter to 0 or its minimum value.

•On some screens, certain keys can have a special function. These are noted on the page describing that screen.

11

Menus

The various functions of the timer are arranged into a set of menus and screens. The diagrams below shows how these are organized and accessed:

..menus

Diagnostic display

Note that some elements may not be visible, if that feature is not being used.

Status: diagnostic error messages. If more than one exists, these are flashed sequentially.

Selected program: this is the program no. that is presently selected.

Measured current: the RMS current measured during the last weld.

Weld counter: the present value in the counter (updates after each weld)

Stepper %complete:shows the progress along the stepping curve.

PV output: The output from the PV controller is determined by the pressure parameter in the selected program.

Measured PV feedback: the dynamic value measured from the feedback channel.

•Press the **F** key to move to the Main menu screen.

•Press **>** to reset faults (same action as external input).

Status messages

The description (abbreviated) appears on the top line of the diagnostic screen.

To reset faults, select the diagnostic screen then press ▶ , or activate the external input. Description Configuration error No sync (50/60Hz) Counter end Retract not ready Data error Weld off No current (weld 1) No current (weld 2) Low current (weld 1) Low current (weld 2) Pre-alarm (weld 1) Pre-alarm (weld 2) High current (weld 1) High current (weld 2) Low pressure High pressure Toroid overrange Toroid short circuit Toroid open circuit Sequencer error Headlocked No Air No Water Stepper prewarning End of Stepper Lost Svnc NVS:Pin not extended NVS:bad setup NVS:bad setdown STOP No thermal

Advice Edit the configuration file Check 27V AC sync. signal source / Check frequency in configuration file Reset counter Operate retract input Edit program Close Weld-on switch Check secondary circuit / check toroid connection Check secondary circuit / check toroid connection Check secondary circuit or adjust parameters Check air system or adjust parameters Check air system or adjust parameters Reduce current, or use an external signal attenuator Inspect toroid connection Inspect toroid connection Edit sequencer program Operate reset fault input Check air sensor or other circuit on Input 13. Reset faults. Check water sensor or other circuit on Input 14. Reset faults. Advance warning of elctrode service required Service electrodes and reset stepper Synchronisation was lost during welding. Check mains waveform. Check locator pin on nut-welder Check dispenser on nut-welder. Reset faults. Check weld condition on nut-welder. Reset faults. Check STOP signal on Input 13 Check signal on input 14.

USE PROGRAM -EXT(0) ← EDIT PROGRAM FILE EDIT LIMITS FILE EDIT EVENTS FILE EDIT COUNTER FILE WELD LOG	Visible window	Change this parameter to select which program will be run when a start input is given. Set this parameter to EXT if you wish to select programmes via the external inputs (the external value will be shown in brackets).
SEQUENCER MENU COPY PROGRAM I/O STATUS ANALOG STATUS WS700 VERSION 1.22		— For information only

•Press the **F** key to return to the diagnostic screen.

Note: To access the **Configuration menu**, select the 'version' line on the main menu (last line), hold down the **>** key, then press the **F** key.

Configuration menu

EDIT CONFIGURATION EDIT CALIBRATION EDIT OUTPUT MAP EDIT INPUT MAP

EDIT PRINTER SETUP INITIALISE ALL DATA

•Press the **F** key to return to the diagnostic screen.

<u>Note:</u> To access the <u>Configuration menu</u>, select the 'version' line on the <u>main menu</u> (last line), hold down the ⊃ key then press the F key.

Visible

window

Edit configuration

Visible

window

<<<CONFIGURATION>>> SEQUENCE:SPOT SIMPLE RETRACT FREQUENCY 50Hz CONTACTOR TIME 10 s BLANKING Off AWAIT PRESSURE On TOROID TEST On SENSOR TOROID HEAT RANGE HIGH STOP ON FAULT SEQUENCER On TEST = AIR / WATER NVS SYSTEM Off LANGUAGE :ENGLISH(UK) Sequence: Spot / Roll-spot / Seam(2-heat) / Seam(pre-heat)/ ½-cycle alternating /
 ½-cycle positive/ ½-cycle negative.

• Retract: **Simple / Hi-lift+ / Hi-lift-**. Set to **Simple** if not required.

• Frequency: **50 Hz / 60Hz** : Set to the frequency of your mains supply.

• Contactor time (**0..200 s**): this is the delay (in seconds) after a weld, before the contactor output is turned off. Set to 0 if not required.

• Blanking (**0..99 cycles**): the first n cycles of weld current will be excluded from the measurement and limit testing process.

...edit configuration

• Await Pressure (**On/Off**): When set to **On**, the sequence will pause between end of squeeze and start of weld1, until the pressure feedback lies within the pressure limits.

• Toroid test (**On/Off**): When set to **On**, the resistance of the toroid is tested while the timer is idle. The resistance must lie between 10 and 100 Ohms. Values outside this range will prevent the timer from starting.

• Sensor:**Toroid / CT** : Select the type of feedback sensor which you are using. Usually, a toroid will be used for sensing on the secondary, and a CT is used for sensing on the primary. Most British Federal equipment has a CT built into the control, avoiding the need for an external sensor.

• Heat range (Wide/High/Low): Wide corresponds to a control range of 30-150'. High corresponds to a control range of 30-130'. Low corresponds to a control range of 50-150'. Select the LOW range for machines with a poor power factor, or when exceptionally low currents are required. Select WIDE range for machines that need to produce both very high and very low currents.

•Stop on fault (Head-lock/Stop/Continue) : If Head-lock is selected, then when a weld fault is detected, the weld air-valve signal is held on and no further welds are permitted, until a fault reset is given. If **Stop** is selected, then when a weld fault is detected, the weld air-valve opens as normal, but no further welds are permitted, until a fault reset is given. If **Continue** is selected, then further welds will be permitted, regardless of the status of the previous weld.

....edit configuration

• Sequencer (On/Off): If On is selected, then the sequencer is active, and welds are started via sequencer statements. If Off is selected, then the sequencer is disabled, and welds can be started via the START input.

• Test: selects the function of inputs 13 and 14.

Off: Inputs are ignored.

Air/Water: Both inputs must be on to enable welding to begin. Seam welds will be aborted if either input is lost. Conditions will clear when inputs are restored.

Air/Water-latched: As for the Air/Water option above. A fault reset signal is required to clear these conditions.

Stop/thermal: Input 13 is a STOP signal. Any weld will be aborted if the STOP signal is lost. Input 14 is for a thermal monitor circuit. Seam welds will be aborted if input 14 is lost. Both inputs must be on to enable welding to begin. Conditions will clear when inputs are restored.

NVS system (see below) must be set to Off.

•NVS System **(On/Off):** If **On** is selected, then Inputs 13,14,15 are allocated to the NVS L1,2,3 outputs from the G.E. Schmidt NVS system, so that the WS700 can provide diagnostic information. Test (see above) must be set to **Off**. Further information about the NVS system can be found at:

http://geschmidt.com/quality-nut-verification-system.html

•Language(UK/US): Selects terminology used on display.

Edit calibration

<<< CALIBRATION >>> TOROID: 150 mV/kA **TOROID FACTOR x1 S/P RATIO 50:1** S/P OFFSET **0** A CCR GAIN (SEAM) 10 PRESSURE: UNITS=kN Pt1: 9.99kN @ 10.0V Pt2: 0.00kN @ 0.00V AN. IN GAIN x1.000 AN. IN OFFSET +1.00 V

Visible

• **Toroid:** sensitivity of the measuring coil (toroid), expressed in mV/kA.

- window Toroid Factor: the ratio of the external attenuator which is required to measure currents>60kA
 - S/P ratio & Offset: See next page for details.

• Seam gain: Adjusts the constant-current response time when seam welding (10 = fastest,1 =slowest).

•Pressure: relationship between the PV controller output voltage and actual tip force. This is expressed by entering two 'test' point values (Pt1, Pt2), which then define a straight-line relationship. The units are selectable (kN or lbf).

• An.in gain: value by which the voltage at the analog input is multiplied. Use to fine trim the reading, or to match a 5V sensor with the 10V input scale.

•An.in offset: value of the voltage at the analog input for a zero reading.

...calibration

- If the sensor (Toroid or CT) is measuring the primary current, the timer can display secondary values. It does this by calculation based on the <u>S</u>econdary to <u>P</u>rimary ratio (S/P ratio) and offset (S/P offset) parameters.
- To determine the correct values, do the following:

- Set the S/P ratio to 1:1 in the calibration.
- Set the S/P offset to 0 in the calibration.
- Do a short circuit weld at a low heat in PHA mode, and measure the secondary current (I_{s1})with a meter. Note the corresponding value (I_{p1}) on the timer status screen.
- Do a short circuit weld at a high heat in PHA mode, and measure the secondary current (I_{s2})with a meter. Note the corresponding value (I_{p2}) on the timer status screen.
- Calculate and enter S/P ratio = $(I_{s2} I_{s1}) / (I_{p2} I_{p1})$
- Calculate and enter S/P offset = I_{s2} ($I_{p2} \times S/P$ ratio)

.....calibration

OR

• If you do not have a suitable meter, or you do not wish to do the calculations, you can still use primary feedback by doing the following:

- 1. Set the S/P ratio = **transformer turns ratio** in the calibration.
- 2. Set the S/P offset to 0 in the calibration.
- If you do not know the **transformer turns ratio**, then use a value of 50:1 as many welding transformers will be approximately this figure.
- The current readings on the timer will be shown in kA, and the timer will regulate (in CCR mode) to these figures, but they will not tie-up with a meter (i.e. the numbers are not absolute, but in 'scaled' Amps).

If you require precise and absolute settings then you must either: •Do the procedure and calculations (see previous page)

•Use secondary feedback from a toroid, and set the sensitivity correctly.

Edit Output Map

Edit Input Map

<<< INPUT MAP >>> Input I01: START Input I02: WELD ON Input I03: 2nd STAGE Input I04: RETRACT Input I05: RES.FAULT Input I06: RES.COUNT Input I07: PROG 1 Input I08: PROG 2 Input I09: PROG 4 Input I10: PROG 8 Input I11: PROG 16 Input I12: PROG 32 Input I13: TEST 1 Input I14: TEST 2 Input I15: GAPSWITCH Input I16: EDIT DIS.

Each input may be independently set up as *either*.

• the standard function assigned (see users connections).

<u>or</u>

Visible

window

• as a SEQUENCER input.

When an input is mapped to 'sequencer', it may be used as part of the sequencer program. Note that inputs I01 and I02 have special functions, and may only be mapped to standard.

Edit Printer setup

<<< PRINTER SETUP >>> PRINT ALL LINES PER PAGE 68 FORMAT TABLE

• Note that the *Print weld log* function will operate independently of the settings made here.

- <u>PRINT:</u> select-OFF (no printing). ALL (print every weld). FAILS (only print failed welds). PASSES (only print good welds).
- LINES PER PAGE: set this to the number of lines which your printer can produce on each sheet of paper . Set to zero to suppress TABLE header.

• FORMAT:

TABLE: tabulated output, suitable for driving a printer. ASCII-HEX: fixed length message suitable for data logging etc. on a PC ASCII-DEC: fixed length message suitable for data logging etc. on a PC

...print format :table

After each weld, the timer sends out a line of text, as shown in the example below. Additionally, a heading will be printed every n lines, where n is the value set for *lines per page.* Set *lines per page* to zero to suppress the heading.

COUNT	PROG	11	12	FORCE	ERROR
1	0	10.5kA	15.5kA	5.45kN	LOW CURRENT WELD 2
2	5	7.65kA	10.4kA	4.05kN	
3	10	0 A	12.5kA	5.05kN	
4	0	0 A	0 A	5.40kN	WELD OFF
5	5	7.50kA	10.8kA	4.00kN	
6	10	0 A	12.5kA	5.10kN	
7	0	10.5kA	16.5kA	5.40kN	HIGH CURRENT WELD2
8	5	7.50kA	10.8kA	4.00kN	
9	10	0 A	12.5kA	5.15kN	
10	0	10.5kA	16.0kA	5.45kN	
10	U	10.0KA	10.00	0.40KN	

...print format :ASCII-HEX

After each weld, the timer sends out the following message:

[COUNT][PROG][CURRENT1][CURRENT2][PRESSURE][STATUS][CR]

where

COUNT=value in counter after weld (4 characters).

PROG=program number used for weld (2 characters).

CURRENT1=current measured during weld1 interval (4 characters). Units = Amps.

CURRENT2= current measured during weld2 interval (4 characters). Units = Amps

PRESSURE=pressure measured at end of weld (4 characters). Units = 0.01 kN / 1 lbf STATUS=8 characters.

CR= Carriage return (hex 0D).

All data is leading zero padded, to ensure a fixed-length message (27 characters, including CR). All data is sent most significant digit first, and in ASCII-HEX format.

i.e. data=2003 (decimal) =07D3(hex)

characters sent= [0][7][D][3]

ASCII equiv.=[hex 30][hex 37][hex 45][hex33]

The STATUS field is a 32-bit bit array of 1-bit flags, encoded as follows:

Bit #	Description	Bit #	Description	Bit #	Description	Bit #	Description
0	Configuration error	8	No current (weld 1)	16	Low pressure	24	Sequencer error
1	No synchronising signal	9	No current (weld 2)	17	High pressure	25	Headlocked
2	Counter end	10	Low current (weld 1)	18	Toroid overrange	26	No Air
3	Counter blocking	11	Low current (weld 2)	19	Toroid short circuit	27	No Water
4	Timer not ready	12	Pre-alarm (weld 1)	20	Toroid open circuit	28	Stepper prewarning
5	Retract not ready	13	Pre-alarm (weld 2)	21		29	End of stepper
6	Data error	14	High current (weld 1)	22		30	Stepper blocking
7	Weld off	15	High current (weld 2)	23		31	Lost Sync

...print format :ASCII-DEC

After each weld, the timer sends out the following message:

[COUNT][PROG][CURRENT1][CURRENT2][PRESSURE][STATUS][CR]

where

COUNT=value in counter after weld (5 characters).

PROG=program number used for weld (3 characters).

CURRENT1=current measured during weld1 interval (5 characters). Units = Amps.

CURRENT2= current measured during weld2 interval (5 characters). Units = Amps

PRESSURE=pressure measured at end of weld (5 characters). Units = 0.01 kN / 1 lbf

STATUS=8 characters (ASCII-HEX format).

CR= Carriage return (hex 0D).

All data is leading zero padded, to ensure a fixed-length message (32 characters, including CR). All data is sent most significant digit first, and in ASCII-DECimal format.

i.e. data=2003 (decimal) = 02003 characters sent= [0][2][0][0][3] ASCII equiv.=[hex 30][hex 37][hex 45][hex 45][hex33]

The STATUS field is a 32 bit array of 1-bit flags, encoded as shown on the previous page. Note that this field is sent in ASCII-HEX format.

...printer connections

Initialise all data

The **Initialise** function provides a convenient means of setting all of the data in the timer to a known initial state. This can be useful when first setting up a system.

<u>**Caution:</u>** When you use the **Initialise** function, you will loose all previously stored data in the timer.</u>

After an **initialise** operation, you should edit the configuration files (configuration, calibration, mapping etc.), to suit your installation. You will then need to set-up any welding programmes etc. which you wish to use.

Edit program

<<< PROGRAM 0 >>>
I1=7.50kA 25.0% PHA *
I2=10.0kA 50.0% CCR
PV=5.00kN@5.00V NORM
PSQ= 0 SQZ= 10
W1 = 0 C1 = 0
W2 = 10 C2 = 0
Pulses(W2-C2) = 1
UPS= 3 DWN = 0
HLD= 10 OFF = 0

Visible window

> **PHA**=Phase angle mode. The current and heat parameters are independently adjustable. No current regulation takes place.

> **CCR**=Constant current regulation mode. The current parameter is adjustable, but the heat is automatically determined by the timer, as it regulates the current to the set level.

> **UPS**= Upslope time, **DWN**= Downslope time

<<< PROGRAM 0 >>>
I1=7.50kA 25.0% PHA
I2=10.0kA 50.0% CCR
PV=5.00kN@5.00V NORM
PSQ= 0 SQZ= 10
W1 = 0 C1 = 0
W2 = 10 C2 = 0
Pulses(W2-C2) = 1
HLD= 10 OFF = 0

Set **OFF** time to 0 for single spot operation. If **OFF** time>0, then repeat operation will occur. Visible window

NORM = normal spot weld operation. **LINK** = linked spot operation.

LINKed operation provides a means of chaining programmes together so that a single start signal generates a sequence of programmes. At the end of a linked program, the next program (numerically ascending) is automatically selected and run, and so on, until either a program set to **NORM**al, or the last program (63) is reached.

....edit program(seam)

If the timer is configured for seam welding, then the program screen changes as shown above, in order to present only the relevant parameters..

.....edit program(½-cycle)

WS700 V1.45

Electrode menu

<< ELECTRODE MENU>> STEPPER STATUS EDIT STEPPER EDIT COUNTER FILE

A stepper is programmed by means of a curve which will provide values of heat and current increments, related to the number of spots done. The curve is defined by a set of 10 points. The timer provides interpolation between these points. Electrode management is provided via a combination of stepper and counter functions. The stepper and counter share a common output and input.

The stepper provides a means of gradually increasing the current, to compensate for electrode wear.

Stepper status

Edit stepper

Visible window CONTINUE AT END SPOTS +HEAT +AMPS 0: 10 1.0% 2.5% 1: 50 1.5% 5.0% 2: 100 2.0% 7.5% 3: 100 2.5% 10.0% 4: 100 3.0% 12.5% 5: 100 3.5% 15.0% 6: 100 4.0% 17.5% 7: 100 4.5% 20.0% If continue at end is selected, then at the orthe last step, further welding can take place normal, but the stepper output will remain ortices in current. If stop at end is selected, then no further welding can take place normal, but the stepper output will remain ortices in current. If stop at end is selected, then no further welding can take place normal, but the stepper output will remain ortices in current. If stop at end is selected, then no further we may take place until a stepper reset is give 9: 200 5.5% 25.0% [PRESET #1]						
1: 50 1.5% 5.0% 2: 100 2.0% 7.5% 3: 100 2.5% 10.0% 4: 100 3.0% 12.5% 5: 100 3.5% 15.0% 6: 100 4.0% 17.5% 7: 100 4.5% 20.0% 8: 150 5.0% 22.5% 9: 200 5.5% 25.0% [PRESET #1] Quick set-up: Enter values in step 9 only, to of finishing point, select the PRESET field, edit the number(see payt page), and then press	at output.	hable or disable the stepper. <u>e aware!</u> The counter and the heat epper share a common input and outpu	<pre>── Visible window</pre>	1 on >>> ND +AMPS 2 5%	EPPER UE AT E +HEAT	<<< ST CONTIN SPOTS 0: 10
[PRESET #1] Quick set-up: Enter values in step 9 only, to c finishing point, select the PRESET field, edit the number(see next page), and then press 2 to k	end of e as on. Ther welding en.	ue at end is selected, then at the end of tep,further welding can take place as but the stepper output will remain on. T her increase in current. t end is selected, then no further welding place until a stepper reset is given.	If <i>con</i> the las norma is no f If <i>stop</i> may ta	5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0% 22.5% 25.0%	1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 5.5%	1: 50 2: 100 3: 100 4: 100 5: 100 6: 100 7: 100 8: 150 9: 200
stepper with a preset curve.	define th the prese load this	<u>p</u> : Enter values in step 9 only, to define nt, select the PRESET field, edit the pr next page), and then press a preset curve.	Quick se finishing p number(s stepper w		ſ#1] ←	[PRESE

CCR mode uses only the +AMPS(dl) parameter, as the heat is self-adjusting.

Stepper presets

When a preset curve is loaded, the data is obtained from a table which holds the 5 curves shown.

The step sizes (spots) are all made the same as for step 9, and the +HEAT(dH) and +AMPS(dI) parameters are obtained by applying the values in step 9 to the curve as a scaling factor.

Edit counter

<<< COUNTER >>> COUNT NOW = 431 COUNT UP TO 500 STOP AT END SYNC. WITH LOG Yes

Be aware!

The counter and the heat stepper share a common input and output.

Set *count up to* to zero, to disable the counter.

Count now is incremented after every weld. When *count up to* is reached, the counter output is activated.

If **stop at end** is selected, then no further welding may take place until a counter reset is given. If **continue at end** is selected, then further welding can take place as normal, but the counter output will remain on.

Count now is reset to zero by activating the counter reset input.

Sync with log: If set to *Yes*, then the log will be cleared when the counter is reset. If set to *No*, then the log and counter are independent.

Weld log

The timer records the currents from each weld into the weld log. The log can hold information from up to 64 welds (after this, the oldest record will be discarded).

To see the information for each weld, select the VIEW LOG function.

The log can be cleared (emptied) by using the CLEAR LOG function. See also counter *sync with log* function.

The PRINT LOG function will send the entire log contents to the RS232 (printer) port.

View log

Sequencer

The sequencer provides a means of controlling a small machine, via a series of logic statements. The statements are executed sequentially in the order in which they appear.

The START input is used to trigger execution of the sequence, and must be maintained. On release of the START signal, the sequence is reset.

With the sequencer configured (see edit configuration), the START signal cannot be used to start a weld. Instead, welds are started via statements within the sequence.

The functions available consist of various input, output, memory, delay, counter and weld operations. It is also possible to program subroutines up to 8 levels deep.

The following resources are available:

Statements(lines))	Up to 249	max.	
Outputs Inputs Memory Counters Analog inputs	8 16 8 8 1	Q1 to Q8 Q1 to Q8 I01 to I16 M1 to M8 C1 to C8 A1	(non-volatile) (non-volatile)	Non-volatile values are retained, even if power is lost. Note that the inputs and outputs are shared with the welding controller and event timer (see Input map and Output map).

Sequencer Menu

...edit sequence

On the edit sequence screen, the keys have the following functions:

At any time:

•Press the 1 or 4 keys to change the selected line. The entire line will flash. The screen will scroll when required.

•Press the **>** key to insert a new (blank) line. The line number will be shown.

•Press the **F** key to return to the sequencer menu screen.

When entire line is flashing:

•Press + and – together to delete the selected line

•Press the + or - keys to alter the selected statement type.

•Press the - key to momentarily see the selected line number.

•Press the ← or → keys to select a parameter (parameter only will flash).

When parameter only is flashing:

•Press the + or - keys to alter the selected parameter.

•Press + and – together to set 0 or minimum value.

Sequencer statements

The following table lists the available logic statement types:

Statement	Range	Function
Line nnn	1249	Line number within sequencer file (has no effect)
STEP nnn	1999	Has no effect, but serves as the target for a JUMP or GOSUB statement, or as a logical divider in the program
AWAIT INPUT Inn ON	116	Waits for Input nn to be ON
AWAIT INPUT Inn OFF	116	Waits for Input nn to be OFF
OUTPUT Qn ON	18	Turns ON Output n
OUTPUT Qn OFF	18	Turns OFF Output n
MEMORY Mn ON	18	Sets Memory bit n (non-volatile)
MEMORY Mn OFF	18	Clears Memory bit n (non-volatile)
DELAY nn.n s	0.199.9 s	Waits for specified time
JUMP nnn	1999	Program continues at specified STEP number.
GOSUB nnn	1999	Program continues with the subroutine at the specified STEP number. (Note maximum of 8 nesting levels)
RETURN		Return from subroutine
COUNTER Cn = xxx	n=18, x=1999	Loads Counter n with the value xxx (non-volatile)
DECREMENT COUNTER Cn	18	The value in Counter n is reduced by 1 (non-volatile)
IF Cn>ZERO, JUMP xxx	n=18, x=1999	If the value in Counter n is not zero, then continue at STEP xxx.
		If the value in Counter n is zero, then continue at the next statement
IF Qn ON, JUMP xxx	n=18, x=1999	If Output Qn is <u>ON</u> , then continue at STEP xxx.
		If Output Qn is OFF, then continue at the next statement
IF Qn OFF, JUMP xxx	n=18, x=1999	If Output Qn is <u>OFF</u> , then continue at STEP xxx.
		If Output Qn is ON, then continue at the next statement
IF Mn ON, JUMP xxx	n=18, x=1999	If Memory Mn is <u>ON</u> , then continue at STEP xxx.
		If Memory Mn is OFF, then continue at the next statement
IF Mn OFF, JUMP xxx	n=18, x=1999	If Memory Mn is <u>OFF</u> , then continue at STEP xxx.
		If Memory Mn is ON, then continue at the next statement
IF Inn ON, JUMP xxx	n=116, x=1999	If Input Inn is <u>ON</u> , then continue at STEP xxx.
		If Input Inn is OFF, then continue at the next statement
IF Inn OFF, JUMP xxx	n=116, x=1999	If Input Inn is <u>OFF</u> then continue at STEP xxx.
		If Input Inn is ON, then continue at the next statement
WELD (Prog=nn)	nn=063, EXT	Execute weld sequence. The program number is determined by the parameter nn. If nn=EXT, then the
		program number will be read from the external selection inputs.
		The sequencer

48

Example sequence

Statement	Range	Function
AWAIT ANALOG n <mm th="" v<=""><th>n=1</th><th>Waits for Analog input n to be less than mm Volts.</th></mm>	n=1	Waits for Analog input n to be less than mm Volts.
	0.0<=mm<=10.0	
AWAIT ANALOG n>mm V	n=1	Waits for Analog input n to be greater than mm Volts.
	0.0<=mm<=10.0	
IF ANALOG n <mm jump="" th="" v,="" xxx<=""><th>n=1</th><th>If Analog input n is less than mm Volts, then continue at STEP xxx, otherwise continue with the next</th></mm>	n=1	If Analog input n is less than mm Volts, then continue at STEP xxx, otherwise continue with the next
	0.0<=mm<=10.0	statement.
IF ANALOG n>mm V, JUMP xxx	n=1	If Analog input n is greater than mm Volts, then continue at STEP xxx, otherwise continue with the next
	0.0<=mm<=10.0	statement.

A short example program:

STEP 1	
AWAIT INPUT 103 ON	Part detector
STEP 2	
OUTPUT Q8 ON	Clamp ON
DELAY 0.5	Pause
STEP 3	
WELD (Prog=1)	Weld operation using program 1
OUTPUT Q8 OFF	Clamp off
STEP 4	
OUTPUT Q7 ON	Signal job done by flashing output until START released
DELAY 0.4	Flash 'On' time
OUTPUT Q7 OFF	
DELAY 0.2	Flash 'Off time
JUMP 4	Loop back to create flashing effect

Copy program

<<< COPY PROGRAM >>> FROM: 0 TO: 1 GO

Copy a program (and associated limit and event files) to any other program, or to all other programmes.

•The **TO** parameter can be set to **ALL** if required (i.e. copy 1 program to all others).

Select the last line (GO), then press the key to execute the copy function.
 This line will briefly show COPY DONE, when the function is complete.

Analog Status

<<< ANALOG STATUS >>> Channel 1 = 0.00 V TOROID R = 20 Ω This screen can be used to observe the status of the analog inputs.

•<u>Analog input channel</u>: the dynamic voltage at the analog input.

•<u>Toroid resistance</u>: the result of the toroid test, in Ohms. If a measurement>750 Ohms is obtained then the (infinity) symbol is shown. If the toroid test is off, then ??? is shown

Disabling edits

Normally, a user can access the parameters via the keypad on the front of the timer, and make any changes, as required. Under some circumstances, it may be desirable to prevent such general access.

The timer provides an input called 'EDIT DISABLE', which can be used to block all parameter edits. With this input on, it will still be possible to view parameters, but no changes are permitted via the keypad.

If edits are attempted, the display will briefly show

** EDITS DISABLED **

and the edit will be blocked.

It is suggested that this input is controlled via a key-switch, such that only the key-holder is able to open the switch, and thus be able to edit parameters.

If this feature is not required, simply leave this input unconnected.

Pop-up current meter

The timer will measure the current on both the weld1 and weld 2 intervals, and this is displayed on the diagnostic screen.

Often, when programming the timer, you will need to refer to these current measurements. In order to avoid having to switch between screens, there is a convenient pop-up current meter window, which allows you to view the measured currents without leaving the screen you are on.

The pop-up meter is activated by pressing the \geqslant key. To close the pop-up window, press the \geqslant key again.

Note that the window may not show both weld1 and weld2, if either interval was not used.

Some screens use the \supseteq key for another purpose (such as selecting an item from a list). In this case, the pop-up meter is not available from that screen.

Operation: basic spot weld – no weld faults

55

Operation: basic spot weld – weld fault

Operation: repeat spot weld

Operation: pulsation spot weld

Operation: Upslope and Downslope

Operation: Upslope and Downslope

60

Operation: roll-spot welding

Operation: seam welding (dual heat)

Operation: seam welding (pre-heat)

WS700 V1.45

Operation: Retract/Hi-lift

WS98-700 PC software

WS98-700 PC software is available for use with the WS700 timer. This offers the user the ability to program and monitor the welding control, and to back-up all of the programmed data on a PC.

WS98-700 is available on CDROM, and works with all versions of Microsoft Windows[™] (98 onwards). Contact BF Entron for more details.

🛄 W598 - [W5: 😯 File Edit B	2003 : Pro Reset View	gram 0*] v Configura	tion <u>W</u> ir	ndow <u>H</u> e	þ								_ 0 2
New WS:	2003-> [Disk->	N) Status	N Counter	い Stepper	->WS2003	->Disk	International Print	(Z) Close	🧼 Help			BF
😤 Program	😤 Events	s <mark>X</mark> 01 Pro	ogram sele	ect 🕌	Counter	🎽 Stepper	🔘 Confi	guration	🔘 I/O map	🥩 Sequ	iencer 👰	Calibration	🛛 😲 Statu:
Program	0	▲ Select	ed prog (2.32	int)	Status me	essage End of count, g	un 1	Weld pro	og II actual	I2 actual	PV demand 0.00V	i	
Presqz	0	÷ cyc	1	Link	to prog	gram 1 🗆	1	Pre-li	mit cour	t 3	-		1
Squeeze	10	÷ сус		Curre	nt mon	itoring 🗹			High	1 10	• %		
Weld1	10	÷ cyc	H1	0.0	• %	(PHA)			Pre-low	1 5	• %		
Cool1	1	÷ cyc	I1	0	÷ A	PHA 🔻			Low	1 10	• • %		
Pulses	1	8/							High	2 10	• %		
Weld2	10	÷ cyc	H2	40.0	• %	(PHA)			Pre-low	2 5	<u>↑</u> %		
Cool2	0	÷ cyc	I2	1.00	≛ kA	PHA -			Low	2 10	<u>∗</u> %		
Hold	10	÷ cyc	1			$\sim \Sigma$							
Off	0	🗧 cyc	PV	5.00	▼ V	(4.99 kN)							
1.1			8 D)	1	1	1	Z),						
\sum		$\mathbf{N}_{\mathbf{r}}$	1	\geq		\sum	$^{\times}$		\sum	\geq	\geq	\geq	\geq
😌 WS2003 : F teady	Program O*												08:50 AM